A multiscale neural network learning paradigm for financial crisis forecasting

نویسندگان

  • Lean Yu
  • Shouyang Wang
  • Kin Keung Lai
  • Fenghua Wen
چکیده

A financial crisis is typically a rare kind of an event, but it hurts sustainable economic development when it occurs. This study proposes a multiscale neural network learning paradigm to predict financial crisis events for early-warning purposes. In the proposed multiscale neural network learning paradigm, currency exchange rate, a typical financial indicator that usually reflects economic fluctuations, is first chosen. Then a Hilbert-EMD algorithm is applied to the currency exchange rate series. Using the Hilbert-EMD procedure, some intrinsic mode components (IMCs) of the currency exchange rate series, with different scales, can be obtained. Subsequently, the internal correlation structures of different IMCs are explored by a neural network model. Using the neural network weights, some important IMCs are selected as the final neural network inputs and some unimportant IMCs that are of little use in mapping from inputs to output are discarded. Using these selected IMCs, a neural network learning paradigm is used to predict future financial crisis events, based upon some historical data. For illustration purpose, the proposed multiscale neural network learning paradigm is applied to exchange rate data of two Asian countries to evaluate the state of financial crisis. Experimental results reveal that the proposed multiscale neural network learning paradigm can significantly improve the generalization performance relative to conventional neural networks. & 2009 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Predictability Power of Neural Network and Genetic Algorithm from Fiems’ Financial crisis

Organizations expose to financial risk that can lead to bankruptcy and loss of business is increased nowadays. This may leads to discontinuity in operations, increased legal fees, administrative costs and other indirect costs. Accordingly, the purpose of this study was to predict the financial crisis of Tehran Stock Exchange using neural network and genetic algorithm. This research is descripti...

متن کامل

Oil Price Forecasting with an EMD-Based Multiscale Neural Network Learning Paradigm

In this study, a multiscale neural network learning paradigm based on empirical mode decomposition (EMD) is proposed for crude oil price prediction. In this learning paradigm, the original price series are first decomposed into various independent intrinsic mode components (IMCs) with a range of frequency scales. Then the internal correlation structures of different IMCs are explored by neural ...

متن کامل

ارائه یک مدل شبکه عصبی جهت پی ش‌بینی کوتاه ‌ مدت قیمت نفت خام

 Iran is one of the top five important countries in the world that have rich oil reserves. Exchange incomes produced by oil exports play an important role in country’s budget. Therefore, the studies and researches in fields that are related to oil economics have great privilage. Today, there is a plentiful interest in use of artificial intelligence methods especially neural networks for improvi...

متن کامل

Enhancing Efficiency of Neural Network Model in Prediction of Firms Financial Crisis Using Input Space Dimension Reduction Techniques

The main focus in this study is on data pre-processing, reduction in number of inputs or input space size reduction the purpose of which is the justified generalization of data set in smaller dimensions without losing the most significant data. In case the input space is large, the most important input variables can be identified from which insignificant variables are eliminated, or a variable ...

متن کامل

A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment

In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2010